Key Recovery Attacks of Practical Complexity on AES Variants

Alex Biryukov, <u>Orr Dunkelman</u>, Nathan Keller, Dmitry Khovratovich, Adi Shamir

Département d'Informatique École Normale Supérieure

France Telecom Chaire

18 August 2009

Current State of Affairs in Cryptanalysis

Time complexity of a related-key attack:

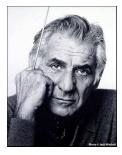
"Thus, the total time complexity of Step 2(b) is about $2^{256} \cdot 2^{167.0} = 2^{423.0}$ SHACAL-1 encryptions."

Most cryptanalytic papers discuss certificational attacks.

Current State of Affairs in Cryptanalysis

Time complexity of a related-key attack:

"Thus, the total time complexity of Step 2(b) is about $2^{256} \cdot 2^{167.0} = 2^{423.0}$ SHACAL-1 encryptions."


- Most cryptanalytic papers discuss certificational attacks.
- These attacks are of great importance, but they do not help answering questions by users:
 - **1** Does this attack affect my system?
 - 2 Should I still use AES-256 for encryption?
 - 3 MD5 is still OK for certificates, right?

What a Break is?

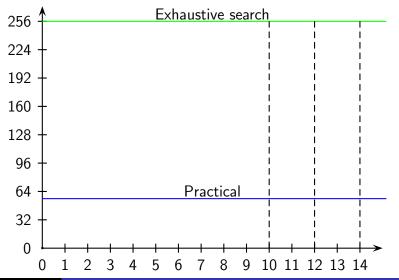
- There are several approaches towards what constitutes a certificational break.
- One approach: max(Time, Data, Memory) less than Exhaustive search' time.
- Another approach: (Time, Data, Memory) better then generic attacks.

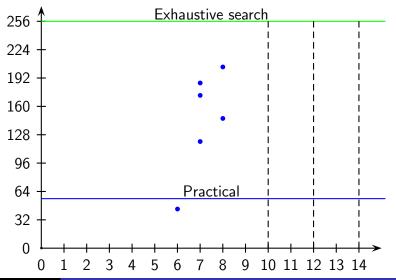
► Time × Memory < Exhaustive search.

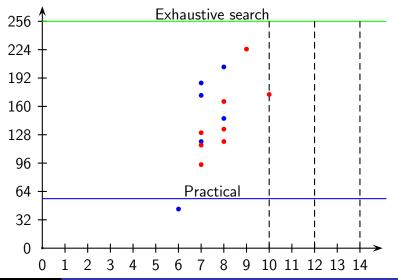
► Time × Memory < Exhaustive search.

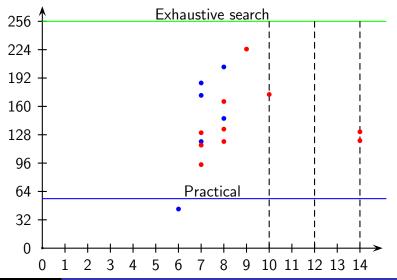
Leonard Bernstein

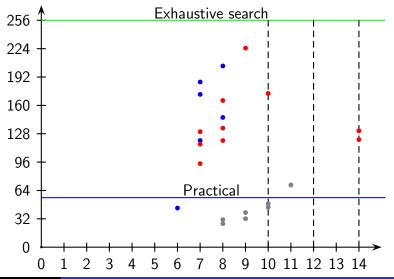
► Time × Memory < Exhaustive search.

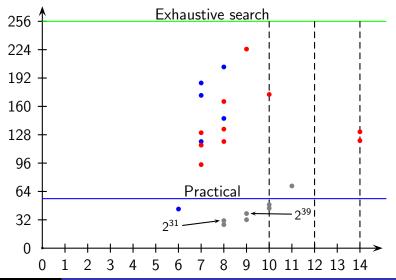


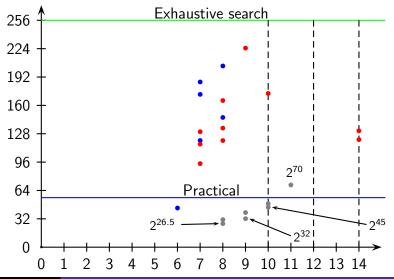

Lev Davidovich Bronstein (Leon Trotsky)

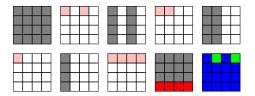

► Time × Memory < Exhaustive search.




Daniel J. Bernstein






New Directions AES Results

Key Schedule Algorithm of AES-256

Our results are based on the fact that key difference

leads to the 10 subkey differences

With probability 1!

Attacks

Rounds	Scenario	Time	Data	Memory	Result
8	Key Diff. – CP	2 ³¹	2 ³¹	2	Distinguisher
8	Subkey Diff. – CC	2 ^{26.5}	2 ^{26.5}	2 ^{26.5}	35 subkey bits
9	Key Diff. – CP	2 ³⁹	2 ³⁸	2 ³²	Full key
9	Subkey Diff. – CC	2 ³²	2 ³²	2 ³²	56 key bits
10	Subkey Diff. – CP	2 ⁴⁹	2 ⁴⁸	2 ³³	Distinguisher
10	Subkey Diff. – CC	2 ⁴⁵	244	2 ³³	35 subkey bits

New Directions AES Results

Security Implications

- Extending AES-128 key to 256 bits actually reduces security!
- The security margins are smaller than expected.

New Directions AES Results

Security Implications

- Extending AES-128 key to 256 bits actually reduces security!
- The security margins are smaller than expected.
- This is a good time to check that Serpent-support...

Did we break the full AES with practical complexity?

Did we break the full AES with practical complexity?

- Did we break the full AES with practical complexity?
- Should users be worried?

- Did we break the full AES with practical complexity?
- Should users be worried?

Questions?

Thank you for your attention!

The paper is available on eprint (2009/374)