Bit Encryption is Complete for CCA2

Steven Myers @ Indiana University abhi shelat @ University of Virginia

To appear FOCS 2009

Problem

- Given a public-key primitive that encrypts ONLY one-bit securely, can you encrypt k-bits securely?
- •Trivial for CPA and CCA1 encryption:
- concatenate bit encryptions.
- •Open question for CCA2 encryption since notion was introduced in [RS91].

CCA2 Reordering Attacks

Reordering Attack

CCA2 Quoting Attacks

Reordering Attack

Construction Ideas

- Easy to deal with reordering attacks (e.g., encrypt each bit with a different public-key).
- Quoting attacks are harder to deal with.
- If you could guarantee there were no pasting attacks made, standard simulation arguments would work.
- Our construction prevents quoting attacks
- Actually build CCA2 KEM/DEM Scheme

Building Blocks

Inner PK Scheme

01001100101

Outer PK Scheme k-bit "weak" Non-Malleable Enc Scheme secure against nonquoting CCA2 adversary.

0 0 0 1 1

Concatenation of I-bit CCA2 encryptions.

Pseudo Random Key Output by KEM

Pseudo Random Key Output by KEM

Lemma I:Adv cannot make α -quotes before β -quotes.

Lemma I:Adv cannot make α –quotes before β –quotes. Lemma 2: Successful Adv must make β –quotes.

Lemma I:Adv cannot make α -quotes before β -quotes.

- Lemma 2: Successful Adv must make β -quotes.
- Lemma 3: Successful β -quote without preceding α -quote breaks non-malleability of α -layer.