Improved Analysis of Unbalanced Feistel Networks by Coupling

Viet Tung Hoang & Phillip Rogaway

University of California, Davis

Unbalanced Feistel networks

• By [Schneier-Kelsey]

CCA-security of unbalanced Feistel networks

а	Queries
а	about 2 ^{(n – a)/2} [Naor - Reingold]
n/2	about 2 ^{n / 2} [Patarin]
1	about 2 ^{n - 1} [Morris et al.]

• Theorem: If a Feistel (*n*, *a*)-network E has $\frac{4rn}{a}$ rounds then

$$\operatorname{Adv}^{cca}(E,q) \le \frac{q}{r+1} \left(\frac{2nq}{a} \cdot 2^{a-n}\right)$$

• Theorem: If a Feistel (*n*, *a*)-network E has $\frac{4rn}{a}$ rounds then

$$\operatorname{Adv}^{cca}(E,q) \le \frac{q}{r+1} \left(\frac{2nq}{a} \cdot 2^{a-n}\right)$$

• Interpretation: CCA-secure to nearly 2^{n-a} queries

• **Theorem**: If a Feistel (*n*, *a*)-network E has $\frac{4rn}{a}$ rounds then

$$\operatorname{Adv}^{cca}(E,q) \le \frac{q}{r+1} \left(\frac{2nq}{a} \cdot 2^{a-n}\right)$$

• Interpretation: CCA-secure to nearly 2^{n-a} queries

• Attack: $r 2^{n-a}$ queries to break a network of *r* rounds.

• Theorem: If a Feistel (*n*, *a*)-network E has $\frac{4rn}{a}$ rounds then

$$\operatorname{Adv}^{cca}(E,q) \le \frac{q}{r+1} \left(\frac{2nq}{a} \cdot 2^{a-n}\right)$$

- Interpretation: CCA-secure to nearly 2^{n a} queries
- Attack: $r 2^{n-a}$ queries to break a network of *r* rounds.
- Simple proof by coupling argument.

• Adversary asks nCPA queries X_1, \dots, X_q

- Adversary asks nCPA queries X_1, \ldots, X_q
- $X = (X_1, ..., X_q)$, and Y: the vector of outputs from X

- Adversary asks nCPA queries X_1, \ldots, X_q
- $X = (X_1, ..., X_q)$, and Y: the vector of outputs from X
- π : uniform distribution in the set of *q*-tuples of elements of {0, 1}^{*n*}

- Pick random vector $U = (U_1, \dots, U_q)$ with distribution π
- Design a new Feistel (*n*, *a*)-network that outputs Y on input *U*, with high probability.

