
Lattice-based Threshold Cryptography

Rikke Bendlin and Ivan Damgård Aarhus University

Lattice-based Cryptography

- Popular problems
 - Factoring
 - Discrete logarithms
- Lattice problems
 - SVP
 - -CVP
 - approximation variants
- Learning With Errors (LWE)

Lattice-based Cryptography

Learning With Errors in Z_q

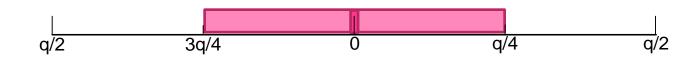
 $\langle \mathbf{s}, \mathbf{a}_1 \rangle \approx_{\chi} \mathbf{b}_1$ $\langle \mathbf{s}, \mathbf{a}_2 \rangle \approx_{\chi} \mathbf{b}_2$:

Find s

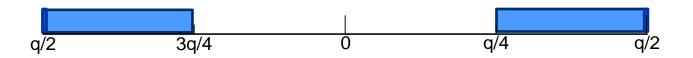
- Reductions to standard lattice problems
 - Quantumly in [Regev 05]
 - Classically in [Peikert et al. 08]

Cryptosystem

- Based on the cryptosystem in [Regev 05]
 - Security parameter n

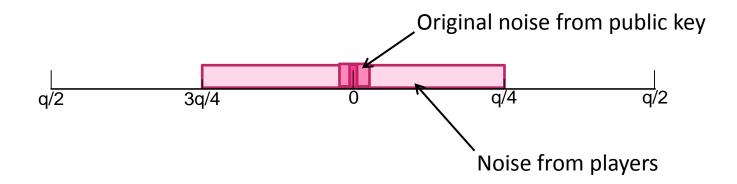

 $-q = 2^{O(n)}$

- Secret key: **s** (from LWE)
- Public key: linear equations with errors


Cryptosystem

- Encryption: Adding a random subset of the linear equations in the public key to get (**a**,b)
- Decryption: Calculate b <a,s>

- Result = 0



- Result = 1

Threshold Cryptosystem

- u players
- Secret key: Each entry is secret shared among the players
- Decryption:
 - Each player can compute share of result locally, but adds noise to ensure security

Threshold Cryptosystem

- Pseudorandom secret sharing
 - players can non-interactively share a common value from some interval
 - no communication during decryption other than sending final shares for opening
- Easily made active secure
- Distributed key generation using noninteractive verifiable secret sharing

Upcoming Work

- Zero-knowledge proofs
- Multiparty Computation

Want to know more

Lattice-based Threshold Cryptography

Rikke Bendlin and Ivan Damgård

http://eprint.iacr.org/2009/391.pdf