Krystian Matusiewicz¹, María Naya-Plasencia², Ivica Nikolić³, Yu Sasaki⁴, Martin Schläffer⁵

Technical University of Denmark
INRIA project-team SECRET
University of Luxembourg
NTT Corporation
IAIK, Graz University of Technology

(Denmark)(France)(Luxembourg)(Japan)(Austria)

SHA-3 Candidate

Not appear in 2nd round

Bruce Schneier doesn't know:

"(...) I am (...) most surprised not to see LANE."

Actually, we don't know either...

But, we do know something.

Our Results

Semi-free-start collisions on full compression function of LANE

	Time	Memory
LANE-256	2 ⁹⁶	2 ⁸⁰
LANE-512	2 ²²⁴	2 ¹²⁸

Attack Method

Improved rebound attack

- 1. Apply inbound phase at several places
- 2. Merge inbounds
- 3. Run outbound phase

can satisfy longer differential path

LANE-256 Round Operation

Two AES states

2x AES round

SwapColumns

Only dependency in two AES states. (slow diffusion)

Enables us to merge several inbound phases.

Lots of freedom remains.

It's even easier for LANE-512

It's even easier for LANE-512

Summary

• Semi-free-start collision attacks on full LANE-256 and LANE-512.

More details in the ASIACRYPT'09 paper:

Rebound Attack on the Full LANE Compression Function Kristian Matusiewicz, María Naya-Plasencia, Ivica Nikolić, Yu Sasaki, Martin Schläffer

Thanks for your attention !