An alternative to Gentry's fully homomorphic encryption scheme (We Do Exist!)

Carlos Aguilar Melchor, Philippe Gaborit et Javier Herranz

XLIM, Limoges University, FRANCE

August 17th, 2009

Group Homomorphic Encryption Scheme

Allows to evaluate monomials or degree 1 polynomials over encrypted data

Leveled Fully Homomorphic Encryption Scheme

For any d there is an instance allowing to evaluate polynomials of degree d

Fully Homomorphic Encryption Scheme

An instance can evaluate any polynomial

Gentry's amazing result

Existence of a fully homomorphic encryption scheme (1978) [Gentry 09]

Based on two new problems :

- The Ideal Coset Problem (close to decisional SVP)
- The SplitKey Distinguishing Problem (close to SSSP)

Theoretical achievement

"Making the full scheme practical remains an open problem" [Gentry 09]

A less theoretical leveled fully homomorphic scheme

Polynomials of degree *d*: SVP gap of $n^{2(d-1)}$ For d = 3 we must have $n^4 \sim O(1.01^n) \rightarrow n \simeq 6500$ [Gama and Nguyen 08] A ciphertext : A few megabits

Additive Homomorphic Encryption with t-Operand Multiplications

Aguilar Melchor C., Gaborit P., Herranz J.

http://eprint.iacr.org/2008/378

We propose

- A Generic construction to obtain leveled fully homomorphic schemes
- Two instances :
 - One based on a worst case/average case reduction to uSVP
 - One based on the DKVP

For d = 3: Ciphertexts of a few megabits

IACR 2008/378

Practical Levelled Full Homomorphic Encryption

Aguilar et al.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Complexity evaluation of LLL

uSVP-based instance is only theoretical

Introduction of ICP by Gentry

DKVP can be replaced by ICP

New practical construction

Polynomials can be evaluated in practice for $d \leq 10$