Schnorr = GQ = Okamoto: Unifying Zero-knowledge Proofs of Knowledge

Ueli Maurer

ETH Zurich

CRYPTO 2009 Rump Session

Fiat-Shamir protocol

Prover Peggy

Verifier Vic

knows
$$x \in \mathbb{Z}_m^*$$

$$z = x^2$$

$$k \in_R \mathbb{Z}_m^*$$

$$t = k^2$$

$$r = k \cdot x^c$$

$$c$$
 ∈ R {0, 1}

$$r^2 \stackrel{?}{=} t \cdot z^c$$

Guillou-Quisquater protocol

Prover Peggy

Verifier Vic

knows
$$x \in \mathbb{Z}_m^*$$

$$z = x^e$$

$$k \in_R \mathbb{Z}_m^*$$

$$t = k^e$$

$$r = k \cdot x^c$$

$$c$$
 ∈ $_R$ [1, e − 1]

$$r^e \stackrel{?}{=} t \cdot z^c$$

Schnorr protocol

Prover Peggy

Verifier Vic

knows
$$x \in \mathbb{Z}_q$$

$$z = h^x$$

$$k \in_R \mathbb{Z}_q$$

$$t = h^k$$

$$r = k + x^c$$

$$\frac{t}{c}$$

$$c$$
 ∈ $_R$ [0, q − 1]

$$h^r \stackrel{?}{=} t \cdot z^c$$

Group homomorphisms

A group homomorphism from a group $\langle G, \star \rangle$ to a group $\langle H, \otimes \rangle$ is a function $f: G \to H$ such that

$$f(a \star b) = f(a) \otimes f(b)$$

Group homomorphisms

A group homomorphism from a group $\langle G, \star \rangle$ to a group $\langle H, \otimes \rangle$ is a function $f: G \to H$ such that

$$f(a \star b) = f(a) \otimes f(b)$$

We write [a] for f(a); hence we have $[a \star b] = [a] \otimes [b]$

Group homomorphisms

A group homomorphism from a group $\langle G, \star \rangle$ to a group $\langle H, \otimes \rangle$ is a function $f: G \to H$ such that

$$f(a \star b) = f(a) \otimes f(b)$$

We write [a] for f(a); hence we have $[a \star b] = [a] \otimes [b]$ Examples:

- $G=\langle \mathbb{Z}_q,+\rangle$, $H=\langle h\rangle$ cyclic group gen. by h $[a]=h^a$: $[a+b]=h^a\cdot h^b=h^{a+b}$
- $G = H = \langle \mathbb{Z}_m, \cdot \rangle$ $[a] = a^e : [a \cdot b] = (a \cdot b)^e = a^e \cdot b^e$

POK of a pre-image of a group homom.

$$\langle G, \star \rangle \to \langle H, \otimes \rangle : a \mapsto [a]$$

Prover Peggy

Verifier Vic

knows $x \in G$

$$z = [x] \in H$$

$$k \in R G$$

$$t = [k]$$

$$r = k \star x^c$$

$$\frac{t}{c}$$

$$c \in_R C \subseteq \mathbb{Z}$$

$$[r] \stackrel{?}{=} t \otimes z^{c}$$

Prover Peggy

Verifier Vic

knows
$$x \in G$$
 $z = [x] \in H$ $k \in_R G$ $t = [k]$ $c \in_R C \subseteq \mathbb{Z}$ $r = k \star x^c$ r $[r] \stackrel{?}{=} t \otimes z^c$

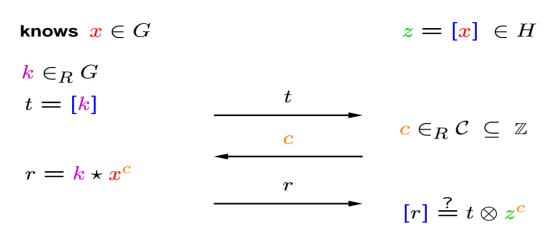
Theorem: If values $\ell \in \mathbb{Z}$ and $u \in G$ are known such that

- (1) $\gcd(c-c',\ell)=1$ for all $c,c'\in\mathcal{C}$ (with $c\neq c'$),
- $(2) \quad [u] = z^{\ell},$

then the protocol round is 2-extractable.

Prover Peggy

Verifier Vic



Theorem: If values $\ell \in \mathbb{Z}$ and $u \in G$ are known such that

- (1) $\gcd(c-c',\ell)=1$ for all $c,c'\in\mathcal{C}$ (with $c\neq c'$),
- $(2) \quad [u] = z^{\ell},$

then the protocol round is 2-extractable.

Theorem: The protocol consisting of s rounds is a proof of knowledge if $1/|\mathcal{C}|^s$ is negligible, and it is zero-knowledge if $|\mathcal{C}|$ is polynomially bounded.

(1)
$$\gcd(c-c',\ell)=1$$
 for all $c,c'\in\mathcal{C}$ (with $c\neq c'$),

$$(2) \quad [u] = z^{\ell},$$

then the protocol round is 2-extractable.

Example: Schnorr

$$(G,\star)=(\mathbb{Z}_q,+)$$
 $H=\langle h \rangle$ cyclic group, order q
 $G \to H: x \mapsto [x]=h^x$
 $\ell=q$
 $u=0$

(1)
$$\gcd(c-c',\ell)=1$$
 for all $c,c'\in\mathcal{C}$ (with $c\neq c'$),

$$(2) \quad [u] = z^{\ell},$$

then the protocol round is 2-extractable.

Example: Guillou-Quisquater

$$(G,\star)=(\mathbb{Z}_m,\cdot)$$
 $(H,\otimes)=(\mathbb{Z}_m,\cdot)$
 $G\to H: x\mapsto [x]=x^e$ (e prime)
 $\ell=e$
 $u=z$

(1)
$$\gcd(c-c',\ell)=1$$
 for all $c,c'\in\mathcal{C}$ (with $c\neq c'$),

$$(2) \quad [u] = z^{\ell},$$

then the protocol round is 2-extractable.

POK of several values:

$$G_i o H_i$$
: $x \mapsto [x]^{(i)}$; $[u_i]^{(i)} = z_i^{\ell}$ (same ℓ)
 $(G, \star) = G_1 \times \cdots \times G_n$
 $(H, \otimes) = H_1 \times \cdots \times H_n$
 $G \to H$: $(x_1, \dots, x_n) \mapsto ([x_1]^{(1)}, \dots, [x_n]^{(n)})$
 $[u_i]^{(i)} = z_i^{\ell}, \quad i = 1, \dots, n$
 $u = (u_1, \dots, u_n), \quad z = (z_1, \dots, z_n)$

(1)
$$\gcd(c-c',\ell)=1$$
 for all $c,c'\in\mathcal{C}$ (with $c\neq c'$),

(2)
$$[u] = z^{\ell}$$
,

then the protocol round is 2-extractable.

Proof of equality of embedded values:

$$G o H_i: x \mapsto [x]^{(i)};$$
 $[u]^{(i)} = z_i^{\ell} \quad \text{(same } u, \ell)$
 $H = H_1 \times \dots \times H_n$
 $G o H: x \mapsto [x] = ([x]^{(1)}, \dots, [x]^{(n)})$
 $z = (z_1, \dots, z_n)$

(1)
$$\gcd(c-c',\ell)=1$$
 for all $c,c'\in\mathcal{C}$ (with $c\neq c'$),

(2)
$$[u] = z^{\ell}$$
,

then the protocol round is 2-extractable.

POK of a representation (e.g. Pedersen commitments):

group H with prime order q, generators h_1,\ldots,h_m repr. of $z\in H$: (x_1,\ldots,x_m) with $z=h_1^{x_1}h_2^{x_2}\cdots h_m^{x_m}$ $G=\mathbb{Z}_q^m$ $G\to H$: $(x_1,\ldots,x_m)\mapsto h_1^{x_1}\cdots h_m^{x_m}$ $\ell=q$ $\ell=(0,\ldots,0)$

(1)
$$\gcd(c-c',\ell)=1$$
 for all $c,c'\in\mathcal{C}$ (with $c\neq c'$),

$$(2) \quad [u] = z^{\ell},$$

then the protocol round is 2-extractable.

Correctness proof for a Diffie-Hellman key:

$$A = g^a$$
, $B = g^b$, $C \stackrel{?}{=} g^{ab}$
 $\mathbb{Z}_q \to H \times H : x \mapsto [x] = (h^x, B^x)$

Prove knowledge of preimage of (A, C)