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Flat-Shamir protocol

Prover Peggy Verifier Vic
knows x € Z, z = g?
kep Z;l;z
t = k2 t

€r{0,1}
r=~k-x




Guillou-Quisquater protocol

Prover Peggy Verifier Vic
knows x € Z, z = x°
kep Z;l;z
t = k° t
crp(l,e— 1]
r=%kLk-x

e L

T t-2



Schnorr protocol

Prover Peggy Verifier Vic
knows x € Zg z = h?*
t = hF t .
ER [07 q — 1]
r=k-+x
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Group homomorphisms

A group homomorphism from a group (GG, %) toagroup {(H, ®)
is a function f . G — H such that

flaxb) = f(a)® f(b)
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We write [a] for f(a); hence we have [a xb] = [a] ® [b]



Group homomorphisms

A group homomorphism from a group (GG, %) toagroup {(H, ®)
is a function f . G — H such that

flaxb) = f(a)® f(b)

We write [a] for f(a); hence we have [a xb] = [a] ® [b]
Examples:
o G = (Zq,+), H= (h) cyclic group gen. by h
[a] = h*: [a+b] = h* - hb = path

o G=H = (Zm,")
la] =a®: [a-b] = (a-b)¢ =a®-b°



POK of apre-image of agroup homom.

(G,x) > {(H,®): aw [a]

Prover Peggy Verifier Vic
knows = € G z=|x] € H
kerpd
t = [K] L.
cpC C Z
r=~kxx

T r=t®=z



Prover Peggy Verifier Vic

knows = € G z=[zx] € H
/CERG
t = [k] ¢ _
cerC C z
r—=k*xx B
r
= [r];t@)z

Theorem: Ifvalues £ € Z and u € (G are known such that
(1) gcd(c—c',0) =1 foralle, ¢’ € C (with ¢ % ¢),
@) [u] = 2",

then the protocol round is 2-extractable.



Prover Peggy Verifier Vic

knows = € G z=[x] € H

kERG
t = [k] ¢

Y

cerC C z

r==kLk%x

[r];t@)z

Theorem: Ifvalues £ € Z and u € (G are known such that
(1) gcd(c—c',0) =1 foralle, ¢’ € C (with ¢ % ¢),
@) [u] = 2",

then the protocol round is 2-extractable.

Theorem: The protocol consisting of s rounds is a proof of

knowledge if 1/|C|® is negligible, and it is zero-knowledge if
|C| is polynomially bounded.



Theorem: If values £ € Z and u € (G are known such that
(1) gcd(c—c,#) =1 foralle,c’ € C (with ¢ # ¢,

@ [u] =2,
then the protocol round is 2-extractable.

Example: Schnorr

(G, *) = (Zg, +)

H = (h) cyclic group, order ¢
G—H: - [x] =h"
t=gq

u=2~0



Theorem: If values £ € Z and u € (G are known such that
(1) gcd(c—c,#) =1 foralle,c’ € C (with ¢ # ¢,

@ [u] =2,
then the protocol round is 2-extractable.

Example: Guillou-Quisquater

(Ga*) — (Zma )

(Ha ®) — (Zm7 )

G—>H: 2z~ [z] =2° (e prime)
! =c¢€

U — =



Theorem: If values ¢ € Z and u € ( are known such that
(1) gcd(c—c,#) =1 foralle,c’ € C (with ¢ # ¢,
@) [u] = 2"

then the protocol round is 2-extractable.

POK of several values:

G, — H; . =~ [2]®; [u](z):z (same £)
(G,%x) =Gy X - xGp
(H,®)=H1><°--XHn
G— H:(x1,...,2n) — ([:cl](l),...,[:cn](n))
[ui](i)zzf, i =1,...,n

u=(uy,...,un), z=1_(21,...,2n)



Theorem: If values ¢ € Z and u € ( are known such that
(1) gcd(c—c,#) =1 foralle,c’ € C (with ¢ # ¢,
@) [u] = 2"

then the protocol round is 2-extractable.

Proof of equality of embedded values:

G— H;: z— [z]W;

[u](Z z (same u, ¢)

H=HyX--- X Hp

G—H: zw[z]=([z]1),... [z](W)

z=(z1,...,2n)



Theorem: If values ¢ € Z and u € ( are known such that
(1) gcd(c—c,#) =1 foralle,c’ € C (with ¢ # ¢,
@) [u] = 2"

then the protocol round is 2-extractable.

POK of a representation (e.g. Pedersen commitments):

group H with prime order g, generators h1,...,hm
repr.of z € H : (x1,...,Tm) withz = h71h52 .- . hZm
G =127y

G— H: (x1,...,Tm) > hyl---him

= q

u=(0,...,0)



Theorem: If values ¢ € Z and u € ( are known such that
(1) gcd(c—c,#) =1 foralle,c’ € C (with ¢ # ¢,
@) [u] = 2"

then the protocol round is 2-extractable.

Correctness proof for a Diffie-Hellman key:

A = g%, B:gb, C;gab
Z¢g - Hx H: xw [z] = (h", BY)

Prove knowledge of preimage of (A, C)



