Public-Key Encryption in the Bounded-Retrieval Model

Joël Alwen, Yevgeniy Dodis, Moni Naor, Gil Segev, Shabsi Walfish, **Daniel Wichs**

Leakage Resilience and the BRM

Leakage Resilience: [AGV09, NS09,...]

Cryptographic schemes that remain secure even if adversary learns **partial information** about sk.

- Goal: High relative leakage.
- Bounded Retrieval Model: [Dzi06, CLW06,...]
 Absolute size of leakage can be arbitrarily large (bits, Mb, Gb...).
 - Accommodate any leakage threshold by increasing key size flexibly.
 - No other loss of efficiency!
 - Small Public Key and Ciphertext.
 - Efficient Encryption/Decryption
 - Independent of leakage.

90% of |sk|

Why have schemes in the BRM?

Security against viruses:

- Virus downloads arbitrary information from local storage and sends it to a remote attacker.
- In practice, virus cannot download too much (< 10 GB).
 - Bandwidth too low, Cost too high, System security may detect.
- Security against side-channel attacks:
 - Adversary gets some "physical output" of computation.
 - May be unreasonable to learn "too much" info, even after many physical readings.
 - How much is "too much" depends on physical implementation (few Kb - few Mb).

Prior Work

Leakage Resilience (No BRM):

- Symmetric-Key Authenticated Encryption [DKL09]
- Public-Key Encryption [AGV09, NS09, KV09]
- Signatures [ADW09, KV09]
- Bounded Retrieval Model:
 - Secret Sharing [DP07]
 - Symmetric-Key Identification and Authenticated Key Agreement [Dzi06,CDD⁺07]
 - Public-Key ID schemes, Signatures, Authenticated Key Agreement [ADW09]

Public-Key Encryption in the BRM

Now: Public-Key Encryption in the BRM.

- Result: PKE parameterized by security parameter s (e.g. 1024 bits) and leakage bound L (e.g. 1024 bits - 10GB).
 - Secret Key size is flexible: $|sk| = (1 + \varepsilon)L$.
 - Public Keys and Ciphertexts are short, only depend on s.
 - Decryption is local. Number of bits accessed is proportional to s.

PKE in the BRM via IBE

- Idea: Use Leakage-Resilient IBE to construct PKE in BRM.
 - Generate a master-key pair (MPK, MSK) for an IBE.
 - ▶ Use MSK to generate keys sk₁,..., sk_n for identities 1,...,n.
 - Set PK = MPK, SK = $(sk_1, ..., sk_n)$. Delete MSK.
 - To encrypt m:
 - Choose t random identities $ID_i \in [n]$.
 - Compute shares $(s_1, ..., s_t)$ such that $m = s_1 + ... + s_t$.
 - Set $c_1 = Enc(ID_1, s_1), \dots, c_n = Enc(ID_t, s_t)$.
 - Ciphertext is $C = (ID_1, ..., ID_t, c_1, ..., c_t)$.
- Good news: Ciphertext, Public-Key, Locality is proportional to security parameter.
- Need leakage resilient IBE. (Of independent interest)
- Is the construction secure? How much leakage?

Security of IBE-based Construction

- Does IBE-based construction amplify leakage resilience?
- Hope: If IBE is secure for leakage of L bits of the peridentity secret keys, is the BRM scheme secure for nL bits?
- Answers:
 - **Bad News**: Not in general. Have artificial counterexample.
 - Good news: Works for PKE/IBE of <u>special form</u>.

Construction

- New notion: "Identity Based Hash-Proof System" (IB-HPS).
 - Hash Proof Systems were shown to give LR PKE in [NS09]
 - Extend to "Identity-Based" setting.
 - Master PK. Secret key for each identity.
- Result I: IB-HPS gives us Leakage-Resilient IBE.
- Result 2: IB-HPS gives us efficient PKE in BRM.
- Construction based on the [Gentry06] IBE .
 - Bilinear assumption (q-ABDHA).
- Construction based on [GPV08] IBE.
 - Lattice assumption (LWE) + RO model.