Efficient Lattice (H)IBE in the Standard Model from the BB₁ Framework

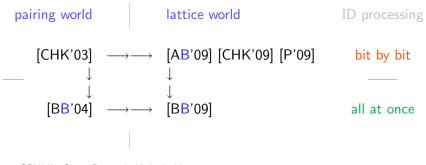
Dan Boneh

Xavier Boyen

Stanford University

Crypto'09 — Rump Session 2009/08/18

Lattice IBE w/o Random Oracles



[CHK'03] — Canetti, Halevi, Katz

[BB'04] — Boneh, Boyen

[AB'09] — Agrawal, Boyen crypto.stanford.edu/~xb/ab09/

[CHK'09] — Cash, Hofheinz, Kiltz

[P'09] — Peikert

[BB'09] — Boneh, Boyen — this talk —

Efficient Lattice IBE : the Scheme

q — small prime n, m — matrix dimensions $m > 2 n \log q$ **Setup** $A_0 \leftarrow \square B_0 \leftarrow \square R \leftarrow |$ low norm $u_0 \leftarrow \square$ $\mathsf{PP} = (A = [A_0 | A_0 R], B_0 = [0 | B_0], u_0) \in \mathbb{Z}_a^{n \times 2m} \times \mathbb{Z}_a^{n \times m} \times \mathbb{Z}_a^n$ $MK = (T_{A_0} = Trapdoor(A_0), R)$ Identity id uses matrix $F_{id} := A + H(id) B = [A_0 | A_0 R + H(id) B_0] \in \mathbb{Z}_{\sigma}^{n \times 2m}$ **Extract** Use T_{A_0} to output low-norm vector $d_{id} \in \mathbb{Z}_a^{2m}$ solution of $F_{id} d_{id} = u_0$ **Encrypt/Decrypt** Regev w/ matrix F_{id} and adjusted noise vector $\mathsf{CT} = \left(c_0 = u_0^T s + x + b \left| \frac{q}{2} \right|, \quad c_1 = \mathcal{F}_{\mathsf{id}}^T s + \begin{bmatrix} y \\ z \end{bmatrix} \right) \in \mathbb{Z}_q \times \mathbb{Z}_q^{2m}$ $\|c_0 - d_{ia}^T c_1\| \stackrel{?}{>} |\frac{q}{4}| \Rightarrow \text{decrypt as "1" else "0"}$

Efficient Lattice IBE : the Reduction

LWE assumption
$$\mathcal{O}_s \equiv \left(a, \underbrace{a^T s + x}_{v}\right) \approx_c \mathcal{U}\left(\mathbb{Z}_q^m \times \mathbb{Z}_q\right) \equiv \mathcal{O}_{\$}$$

Target selective-ID security : \mathcal{A} reveals id* first Setup $A_0, u_0 \leftarrow \mathcal{O}$ from LWE B_0 with $T_{B_0} = \text{Trapdoor}(B_0)$ PP = $\left(A = \begin{bmatrix} A_0 & | & A_0 & R \\ R_0 & H(\text{id}^*) & B_0 \end{bmatrix}, B = \begin{bmatrix} 0 & | & B_0 \end{bmatrix}, u_0 \right)$

Queries (id \neq id^{*}) Use T_{B_0} to output low-norm vector d_{id} solution of $F_{id} d_{id} = u_0$ (fails on id^{*} since for $F_{id^*} = [A_0 | A_0 R]$ the trapdoor cancels)

Challenge w/ noise comp.

$$\mathsf{CT} = \left(c_0 = \underbrace{v_0}_{\mathsf{LWE}} + b \lfloor \frac{q}{2} \rfloor, c_1 = \begin{bmatrix} 1 \\ R^T \end{bmatrix} \underbrace{[v_1 \dots v_m]}_{\mathsf{LWE}}^T + \begin{bmatrix} y \\ -R^T y + z \end{bmatrix} \right)$$

Efficient Identity Encoding

Only a few possible id $\in \mathbb{Z}_q$ so far...

How to get exponentially many?

Increase $q > 2^n$ but inefficient (wastes the appeal of small q) Encode id not into \mathbb{Z}_q but into $\mathbb{Z}_q^{n \times n}$

Encoding with Full-Rank Differences

 $H: \mathbb{Z}_q^n \to \mathbb{Z}_q^{n \times n} \text{ s.t. } \forall \mathsf{id}_1 \neq \mathsf{id}_2: \big| H(\mathsf{id}_1) - H(\mathsf{id}_2) \big| \neq 0$

Goals

Sub-expressions " $H(id) B_0$ " : view as $n \times n$ matrix multiply Trapdoor-ed $H(id) B_0 - H(id^*) B_0$ must not vanish for $id \neq id^*$ \longrightarrow requires $H(id) - H(id^*)$ non-singular

Result

• Have generic FRD encoding scheme w/ most possible qⁿ id-s

Conclusion

- First efficient IBE from lattices in standard model
 - comparable to random-oracle-model [GPV'08]
 - *n* times better than standard-model [AB'09] [CHK'09] [P'09]
- Lattice analogue to pairing BB₁ framework
 - supports HIBE delegation, etc.
- Nice use of general tool : full-rank-diff (FRD) matrix encoding

Why IBE from lattices?

hedge against quantum computing simpler than pairings etc.